Utilization of Event Shape in Search of the CME

Ryan Milton arXiv: 2110.01435 Authors: Ryan Milton, Gang Wang, Maria Sergeeva, Shuzhe Shi, Jinfeng Liao, Huan Zhong Huang

Event Handles

- Can project $\Delta \gamma_{112}$ measurements to zero v_2 (or zero $v_2 \Delta \delta$) to eliminate residual backgrounds
 - Background stems from coupling between v_2 and δ
 - Called event-shape-engineering (ESE)
- q_2^2 is the event-handle used for projection
 - Observables are measured in q_n^2 bins (v_n presented on right)
 - \circ When looking at $\Delta\gamma_{123},$ use 3rd-order instead

•
$$q_{n,x} = \frac{1}{\sqrt{N}} \sum_{i}^{N} \cos(n \phi_i), \ q_{n,y} = \frac{1}{\sqrt{N}} \sum_{i}^{N} \sin(n \phi_i)$$

 $\circ \quad \overrightarrow{q_n} = (q_{n,x}, q_{n,y})$

- q_n obtained from POI used in observables
 - Improves reliability of the projection
 - Some residual backgrounds will remain
- Explore this method using AVFD model in Au+Au, Ru+Ru, and Zr+Zr
 - Same data used in STAR technical paper, arXiv:2105.06044

CME Studies Using Event Shape

Projecting to zero-flow mode

- Use v_2 , $v_2\Delta\delta$, and q_2^2 for projections
- Fit the data and use the y-intercept to obtain the zero-flow mode
- Use a first-order polynomial for v_2 and $v_2\Delta\delta$, and a second-order polynomial for q_2^2
 - Makes errors for q_2^2 larger than those of other handles
- In AVFD model, ESE approach does not completely remove the background

$\Delta \gamma_{112}$ with larger n_5/s

- ESE intercept increases with n_5/s , agreeing with expectations
- $\Delta\gamma_{112}$ {RP} is consistently larger than $\Delta\gamma_{112}$ {PP} due to its closer correlation with the magnetic field
- Currently only showing projection with v_2 for simplicity
- ESE intercepts must be corrected by factor of $(1 2v_2)$

Comparison with ensemble average

- In pure background case $(n_5/s = 0)$, ESE removes large chunk of residue background
 - Suppresses background by factor of 6 relative to ensemble average
- True CME signal illustrated with curves
 - Given by $\Delta \gamma_{112}^{CME} = \Delta \gamma_{112} \Delta \gamma_{112}|_{n5/s=0}$ (solid curves)
 - Same as $\frac{1}{2}(a_{1,+}^2 + a_{1,-}^2) a_{1,+}a_{1,-}$ (dotted curve in top panel)
- ESE intercepts much closer to CME signal than ensemble averages are

CME Fraction, f_{CME}

- Use CME fraction to better compare the ensemble average and ESE intercepts
 - $\circ \quad f_{\rm CME} = {\rm Signal}/\Delta\gamma_{112}$
- *f*_{CME} significantly larger for ESE intercepts than for ensemble averages
 - Ensemble averages have much more background than ESE intercepts
- Uncertainty for ESE intercepts are larger
 - The major downside of ESE

$n_5/s = 0.1$	Average	$\mathrm{ESE}\{q_2^2\}$	$ESE\{v_2\}$	$\text{ESE}\{v_2\Delta\delta\}$
$f_{\text{CME}}\{\text{RP}\}\ (\%)$	47.4 ± 0.5	76.9 ± 1.7	80.0 ± 1.6	79.3 <u>+</u> 1.5
$f_{\text{CME}}\{\text{PP}\}\ (\%)$	35.4 ± 0.6	71.7 ± 2.7	76.2 ± 2.6	75.1 <u>+</u> 2.1
$n_5/s = 0.2$	Average	$\mathrm{ESE}\{q_2^2\}$	$ESE\{v_2\}$	$\text{ESE}\{v_2\Delta\delta\}$
$n_5/s = 0.2$ $f_{CME}\{RP\}(\%)$	Average 78.5 ± 0.2	ESE $\{q_2^2\}$ 87.5 ± 0.5	ESE{v ₂ } 87.9 ± 0.4	$ESE\{v_2\Delta\delta\}$ 87.6 ± 0.4

Isobar systems

- Similar trends in Ru+Ru and Zr+Zr
- ESE intercepts significantly reduce background
 - In pure background case, suppress background by factor of 5 relative to ensemble averages
- Results for both isobar systems are consistent with each other for all n_5/s
 - Cannot differentiate due to lack of statistics

Ru+Ru f_{CME}

- *f*_{CME}{PP} for ensemble average is much lower in isobar than Au+Au
 - Due to smaller-system induced fluctuations
- At higher n_5/s , ESE again has improved f_{CME} but worse significance
- At lower n_5/s , ESE offers better f_{CME} with similar statistical significance
 - Recent STAR data suggests f_{CME} for ensemble average is small in isobar, so ESE could be advantageous

$n_5/s = .05$	Average	$\text{ESE}\{q_2^2\}$	$ESE\{v_2\}$	$ESE\{v_2\Delta\delta\}$
f_{CME} {RP} (%)	16.3 ± 1.7	51.0 ± 6.7	48.5 ± 5.8	47.2 <u>+</u> 5.5
$f_{CME}{PP}(\%)$	6.3 ± 2.1	20.2 ± 7.1	21.8 ± 7.5	21.1 ± 7.3
$n_5/s = 0.1$	Average	$\text{ESE}\{q_2^2\}$	$ESE\{v_2\}$	$ESE\{v_2\Delta\delta\}$
$f_{CME}\{RP\}(\%)$	43.2 ± 1.4	71.9 ± 3.5	73.6 ± 3.1	72.7 ± 3.1
$f_{CME}{PP}(\%)$	14.4 ± 2.2	31.3 ± 5.7	33.7 ± 5.9	33.0 ± 5.7
$n_5/s = 0.2$	Average	$\text{ESE}\{q_2^2\}$	$ESE\{v_2\}$	$ESE\{v_2\Delta\delta\}$
f_{CME} {RP} (%)	75.3 ± 0.5	88.2 ± 0.9	88.0 ± 0.8	87.6 ± 0.4
$f_{\text{CME}}\{\text{PP}\}\ (\%)$	41.3 ± 1.3	65.0 ± 2.8	65.1 ± 2.5	63.9 ± 2.4

$\Delta \gamma_{132}$ in Au+Au

- $\Delta \gamma_{132} = \left\langle \cos(\phi_{\alpha} 3\phi_{\beta} + 2\Psi_2) \right\rangle$
- $\Delta \gamma_{132}$ seems to vanish with the ESE approach
 - No residual background like $\Delta \gamma_{112}$
- Consistent with the idea that $\Delta \gamma_{132} \approx v_2 \Delta \delta$
- This also explains why the ensemble average decreases with increasing n_5/s
 - v_2 constant, but $\Delta\delta$ decreases in value
- Can serve as a systematic check in real data analysis

$\Delta \gamma_{123}$ in Au+Au

- $\Delta \gamma_{123} = \left\langle \cos(\phi_{\alpha} + 2\phi_{\beta} 3\Psi_3) \right\rangle$
- Observables w.r.t. RP give zero on average
- ESE seems to reduce the flow-related background in $\Delta \gamma_{123}$, but does not fully eliminate it like $\Delta \gamma_{132}$
- $\Delta \gamma_{123}$ does not seem to be a proper estimate for the flow-related background
- $\Delta \gamma_{123}$ likely model-dependent based on differences in AMPT and AVFD

Conclusion

- Event-shape-engineering significantly reduces the flow-related background in $\Delta\gamma_{112}$ measurements
- Compared to the standard ensemble averages, ESE reduces background in $\Delta \gamma_{112}$ by up to 6 times, but has increased uncertainty
- $\Delta \gamma_{132}$ mostly vanishes with ESE, supporting its approximate equivalence to $v_2 \Delta \delta$
- $\Delta \gamma_{123}$ is not properly controlled with ESE and does not seem like a good estimate for the flow-related background

Thank you!